Descriptive discriminant analysis (slides)
The descriptive discriminant analysis (DDA) or canonical discriminant analysis is a statistical approach which performs a multivariate characterization of differences between groups. It is related to other factorial approaches such as principal component analysis or canonical correlation analysis.
In these slides, we show the main issues of the approach, and the reading of the results. We show also how the discriminant analysis is related to the predictive discriminant analysis (linear discriminant analysis) which, yet, relies on restrictive statistical assumptions.
Keywords: discriminant analysis, descriptive discriminant analysis, canonical discriminant analysis, predictive discriminant analysis, correlation ratio, R, lda package MASS, sas, proc candisc
Components (Tanagra): CANONICAL DISCRIMANT ANALYSIS
Slides: DDA
Dataset: wine_quality.xls
References:
SAS, "CANDISC procedure".
In these slides, we show the main issues of the approach, and the reading of the results. We show also how the discriminant analysis is related to the predictive discriminant analysis (linear discriminant analysis) which, yet, relies on restrictive statistical assumptions.
Keywords: discriminant analysis, descriptive discriminant analysis, canonical discriminant analysis, predictive discriminant analysis, correlation ratio, R, lda package MASS, sas, proc candisc
Components (Tanagra): CANONICAL DISCRIMANT ANALYSIS
Slides: DDA
Dataset: wine_quality.xls
References:
SAS, "CANDISC procedure".
Comments
Post a Comment